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Abstract In our previous papers (Mackevičius et al. in Cent Eur J Chem 10(2):380–
385, 2012 , J Math Chem 50(8):2291–2302, 2012 ), we presented a method for estima-
tion of the diffusion and reaction rates of synthesis at high temperatures using limited
information, such as synthesis time and dimensions of reactants, from real laboratory
experiments. The method was limited to the two-reactant case. In order to extend
the method to the three-reactant case, the form and distribution of particles of three
reactants must satisfy requirements of periodicity and symmetry. In our model, we
achieve this by taking rhombic particles and a triangular synthesis space. Solving in
the latter an inverse modeling problem, we obtain explicit formulas for the diffusion
coefficient and reaction rate as functions of temperature by calculating the activation
energies and other parameters of CHAp synthesis.
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1 Introduction

The rate of a general homogeneous reaction is conventionally measured by follow-
ing the decrease in concentration of reactants or the increase in concentration of the
products at constant temperature. For the heterogenous reaction, however, the concept
of concentration no longer has the same significance, and the progress of reaction is
usually determined in some other way. The kinetics and the mechanism studies of het-
erogeneous reactions thus involve measurement of changes in mass of reactants of the
sample as functions of time at constant temperatures [3–6]. Many equations relating
the rate of solid-state reactions under isothermal and nonisothermal conditions to the
bulk nucleation followed by three-dimensional growth and diffused distribution at the
phase boundary (classical Fick diffusion or Prout–Tompkins model) are summarized
and discussed in the literature [7–11]. The interpretation of the kinetic equations is
extremely complicated and considers the way in which the reaction starts, by a process
of nucleation, then how those nuclei grow and what reaction or interface geometry is
involved, and finally, how the reactants decay .Consequently, for the investigation of
complex solid-state reactions different novel mathematical approximations and com-
putational models recently have been suggested [12–14].

Synthetic calcium hydroxyapatite, Ca10(PO4)6(OH)2 (CHAp for short) is known
to be one of the most important implantable materials due to its biocompatibility,
bioactivity, and osteoconductivity and is used as a substitute material for human hard
tissues [15–17]. However, the specific chemical, structural, and morphological prop-
erties of CHAp bioceramics are highly sensitive to the processing conditions [18–21].
Several sol–gel approaches starting from nonaqueous [22,23] and aqueous [24,25]
solutions of different precursors of calcium and phosphorus have been used for the
preparation of CHAp powders. The aqueous route of sol–gel preparation of calcium
hydroxyapatite offers an effective and relatively simple sol–gel procedure for CHAp.
The aqueous sol–gel process offers considerable advantages of good mixing of the
starting materials and excellent chemical homogeneity of the product. However, it
has been well demonstrated that many parameters of sol–gel process such as starting
materials and its concentration, pH, temperature, speed of stirring, stirring time, dura-
tion of gelation, nature and concentration of complexing agents, and others should
be carefully controlled [26–29]. It was shown that these parameters in the aqueous
sol–gel processing have a huge impact on the phase purity, morphological and other
physical properties of the end products. The obtained results initiated the continuation
of this work to investigate the possibility of computational modeling on the formation
of sol–gel-derived calcium hydroxyapatite.

We applied our model for estimation of the parameters of the CHAp synthesis, such
as the diffusion coefficients and reaction rates, using a rather limited information from
real laboratory experiments. Namely, the known data only includes the synthesis half-
times at different temperatures and approximate sizes of reactant particles. We use the
Fick, Arrhenius, and active mass laws. Though the validity of applying the Arrhenius
law to heterogeneous reactions has been questioned, the parameters obtained from it
often have practical values even if their theoretical interpretation is difficult.

In this paper, we consider the two-dimensional (in space variables) model. In the
two-reactant case [1,2], to simplify the calculations, we assumed that the square parti-
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cles are distributed periodically in the chessboard order. This allowed us to reduce the
calculations in the square-form synthesis space such that the whole synthesis space is
symmetric with respect to the boundary (the edges of the square). To extend the model
to the three-reactant case, the form and distribution of the particles of three reactants
must also satisfy appropriate requirements of periodicity and symmetry. In our model,
we achieve this by taking rhombic particles and reducing calculations to a triangular
synthesis space. Solving in the latter an inverse modeling problem, we obtain explicit
formulas for the diffusion coefficient and reaction rate as functions of temperature by
calculating the activation energies and other parameters of CHAp synthesis.

The paper is organized as follows. In Sect. 2, we give a brief description of laboratory
experiments of CHAp synthesis. In Sect. 3, we present a mathematical model for
estimation of diffusion–reaction synthesis rates. In Sect. 4, we formulate the main
goal of the paper, the parameters to be estimated. In Sect. 5, we present the calculation
method and steps and, in Sect. 6, the results obtained. We conclude in Sect. 7.

2 Experimental

In the sol–gel process phosphoric acid, H3PO4, and calcium acetate monohydrate,
Ca(CH3COO)2H2O, were selected as P and Ca precursors, respectively. Calcium
acetate was first dissolved in 0.2 M CH3COOH at room temperature (20 ◦C) or at 65 ◦C.
To these solutions, phosphoric acid was added and the resulting mixtures were stirred
for 1 h at the same temperatures. In a following step, tartaric acid as complexing agent
was added to the above solutions. After concentrating the solutions by slow evaporation
at 20 ◦C or 65 ◦C under stirring the Ca–P–O sols turned into the transparent gels. The
oven-dried (100 ◦C) gel powders were ground in an agate mortar and annealed for 5
h at 800–1,300 ◦C in air.

3 Mathematical model

We denote by C4 the concentration of the complex Ca10(PO4)6(OH)2 resulting from
the synthesis of three complexes 10Ca, 6PO4, and 2OH with concentrations C1, C2
and C3, respectively, in the reaction

10Ca2+ + 6PO4
3− + 2OH− → Ca10(PO4)6(OH)2. (1)

The reaction rate w can be expressed by the rate law as follows:

w = kC1C2C3, (2)

where k is the reaction rate.
The dynamics of concentrations of the reactants by diffusion is described by the

second Fick’s law:

wi = ∂Ci

∂t
=

2∑

j=1
Di

∂2Ci
∂x2

j
, (3)
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where Di is the diffusion coefficient, n is the dimension of the model, and wi is the
rate of synthesis of the i th reactant. We denote

c1 = 10C1, c2 = 6C2, c3 = 2C3, c4 = C4; (4)

that is, ci = ci (x, t) is the concentration of the i th reactant (Ca, PO4, OH,

Ca10(PO4)6(OH)2 for i = 1, 2, 3, 4, respectively) of the synthesis at a point x ∈ V at
time t .

Using the second Fick law and the active mass law for the reaction (1), we get the
following partial differential equation system on the synthesis space V :

∂c1

∂t
=

2∑

j=1
D1

∂2c1
∂x2

j
− 1

12 kc1c2c3, (5)

∂c2

∂t
=

2∑

j=1
D2

∂2c2
∂x2

j
− 1

20 kc1c2c3, (6)

∂c3

∂t
=

2∑

j=1
D3

∂2c3
∂x2

j
− 1

60 kc1c2c3, (7)

∂c4

∂t
=

2∑

j=1
D4

∂2c4
∂x2

j
+ 1

120 kc1c2c3, (8)

with initial conditions ci (x, 0) = c0
i (x), x = (x1, x2) ∈ V = V ∪ ∂V, i = 1, 2, 3, 4,

and some boundary conditions (to be stated below) on the boundary ∂V of V . Since
the sizes of particles of Ca, PO4, OH, and Ca10(PO4)6(OH)2 are similar, we assume
that all the diffusion coefficients coincide, that is, D1 = D2 = D3 = D4 = D.

We analyze the relations between D and k by using the following data known
from the true laboratory experiments at Vilnius University: the synthesis times at
different temperatures and typical dimensions of the reactant particles. In our model,
for calculations, we use the synthesis half-time, which is the time, denoted t1/2, in
which the total concentration of initial reactants falls to one half; so, it satisfies the
equation

∫

V

(c1(x, t1/2) + c2(x, t1/2) + c3(x, t1/2)dx

= 1

2

∫

V

(c1(x, 0) + c2(x, 0) + c3(x, 0))dx . (9)

Theoretically, the total concentration of initial reactants, although decays expo-
nentially, always remains positive, and therefore the “full” synthesis time is infinite.
Practically, we assume that the synthesis is over when the total concentration of ini-
tial reactants becomes “sufficiently small,” namely, the unreacted part is less than
0.1 % ≈ 2−10. From experiments we know that the “full”synthesis times are approxi-
mately 6, 8, 10, and 16 h at the temperatures T = 1,200, 100, 1,000, and 900 ◦C, respec-
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2

Fig. 1 Construction of a synthesis space in the two-dimensional two-reactant model: V = (0, a) ×
(0, a); a = 1 (μm)

Fig. 2 Construction of a synthesis space in the two-dimensional three-reactant model

tively. So, in our calculations, we assume that the synthesis half-times are one-tenth
of the corresponding “full” times, that is, 0.6, 0.8, 1.0, and 1.6 h at the temperatures
T = 1,200, 1,100, 1,000, and 900 ◦C, respectively.

At the preparatory stage of the synthesis the reactants are milled and mixed thor-
oughly in some cubic volume. The particles in the synthesis space are distributed
randomly since their exact initial positions are unknown. As a result, modeling would
require a huge memory size for storage. Therefore, we first assume that the particles
are stored periodically. Moreover, in order to reduce the calculations to an area with
zero Neumann boundary condition (zero normal derivative), we have to store the par-
ticles symmetrically with respect to any edge of the boundary of any particle. This is
simple in the two-reactant case, as is shown in Fig. 1. In the three-reactant case, we
achieve the periodicity and symmetry by taking rhombic particles so that the synthesis
volume V is triangular as is shown in Fig. 2.

The typical volume of particles in the sol–gel synthesis method is 1 μm3. So, sum-
marizing, we arrive at the equation system (5)–(8) in the triangular synthesis spaceV
shown in Fig. 3, with the initial conditions in the three inner triangles proportional
to the initial densities of the three reactants and zero Neumann boundary conditions,
∂ci
∂n = 0 on ∂V , where n is the normal vector to the boundary.

When solving numerically the partial differential equation system (5)–(7) in the
triangular area, we use a finite difference technique, which is rather complicated to be
given here.

4 The main goal

Our estimations are based on the Arrhenius laws describing the temperature depen-
dence of the diffusion and reaction rate coefficients by the following relations:
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Fig. 3 The synthesis space in
the three-reactant model

D = D0 exp

{

− ED

RT

}

, k = k0 exp

{

− E A

RT

}

. (10)

Here, ED is the diffusion activation energy, E A is the reaction activation energy, D0
and k0 are constants, and R = 8.314472. Our main goal is to estimate the unknown
parameters by finding the possible values of the coefficient pairs (D, k) for tempera-
tures T = 1,200, 1,100, 1,000, and 900 ◦C. In a sense, we solve the inverse problem for
system (5)–(7): given the synthesis half-time t1/2 at some temperature T , we look for
the parameters D and k of the system such that the half-time condition (9) is satisfied.
Then from the obtained data, using Eq. (10), we can find approximate values of the
parameters ED, E A, D0, k0 and, in particular, the true values of parameters D and k
for any given temperature T (see Sect. 5).

5 Calculation method

We calculate the diffusion and reaction rate coefficients as follows:
First, for the temperatures T1 =1,200 ◦C, T2 =1,100 ◦C, T3 =1,000 ◦C, and T4 =

900 ◦C, we draw the corresponding graphs L1, L2, L3, and L4 of points (D, k) of the
diffusion and reaction rate parameters for which the half-times are equal to those of the
laboratory experiments by using the sol–gel synthesis method (i.e., t1/2 = 0.6, 0.8, 1,
and 1.6, respectively). To this end, we use our computer program which, given any
fixed D, half-time t1/2, and particle size a, numerically solves the system (5)–(7) until
the half-time condition (9) is satisfied and, using the middle-point method, finds the
value k such that half-time coincides with the given one. For each temperature T , a
sufficiently large discrete set of the (D, k) values is joined by a smooth curve. So, all
four graphs, L1, L2, L3, and L4, are shown in Fig. 4.

To calculate the four unknown parameters (ED, E A, D0, k0), we proceed as follows.
For any pair (D1, k1) ∈ L1 and any pair (D2, k2) ∈ L4, using the Arrhenius law for
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Fig. 4 Calculations in the three-reactant model in the triangular synthesis space V with edge a = 1 (μm)
shown in Fig. 3

T1 = 1473 K and T4 = 1173 K, we write and solve the following equation system
with respect to unknown (ED, E A, D0, k0):

D1 = D0 exp
{
− ED

R·T1

}
,

D2 = D0 exp
{
− ED

R·T4

}
,

k1 = k0 exp
{
− E A

R·T1

}
,

k2 = k0 exp
{
− E A

R·T4

}
.

This way, we get the set of possible collections of the parameters (Ei
D, Ei

A, Di
0, ki

0), i =
1, 2, . . .. Repeating this for curves L2 and L3, we get another set of possible collections
of the parameters, (E j

D, E j
A, D j

0 , k j
0 ), j = 1, 2, . . ..

Using the weighted least-squares-method, we look for the minimal value of the
sum

w1

(
Ei

D − E j
D

)2 + w2

(
Ei

k − E j
k

)2 + w3

(
Di

0 − D j
0

)2 + w4

(
ki

0 − k j
0

)2
, (11)

where we choose the weight coefficients wi , i = 1, 2, 3, 4, so that the summands
are approximately of the same order. The collections of parameters minimizing
the sum (11), say (Ei0

D, Ei0
A , Di0

0 , ki0
0 ) and (E j0

D , E j0
A , D j0

0 , k j0
0 ), can both serve as

estimates of (ED, E A, D0, k0). We finally take the average values of parameters:
(ED, E A, D0, k0) = ((Ei0

D + E j0
D )/2, (Ei0

A + E j0
A )/2, (Di0

0 + D j0
0 )/2, (ki0

0 + ki0
0 )/2).

Now we can use these values to calculate D and k for arbitrary temperature T . Their
values for temperatures Ti , i = 1, 2, 3, 4, are marked in Fig. 4 by “�”.
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Table 1 Diffusion and reaction rates

T 900 ◦C 1,000 ◦C 1,100 ◦C 1,200 ◦C

D 3.7e−5 3.9e−5 4e−5 4.1e−5

k 3e9 4.6e9 6.8e9 9.4e9

6 Calculation results

For the three-reactant model, we obtained the diffusion and reaction rates as functions
of synthesis temperature T :

D = 6.5e5 − exp(−5.6e3/(RT )), (12)

k = 8.7e11 exp(−5.5e4/(RT )). (13)

The obtained Arrhenius law equations (12)–(13) give us the diffusion and reaction
rates at temperatures T = 900, 1,000, 1,100, and 1,200 ◦C, presented in Table 1.

7 Conclusions

Using a mathematical model based on second Fick’s, active mass, and Arrhenius laws,
we have analyzed a method for calculation of diffusion and reaction-rate coefficients
of heterogeneous reactions at high temperatures in the two-dimensional three-reactant
model. In comparison with the two-reactant case, the novelty of the model is that, in
order to satisfy the periodicity and symmetry conditions on the form and distribution of
the particles of three reactants, we consider rhombic-form particles distributed so that
the calculations can be reduced to a triangular space. Having four half-times obtained
by the same method at different temperatures:

1. We obtained explicit formulas for the coefficients expressing the dependence of the
diffusion coefficient and reaction rate on the temperature, provided by Eqs. (12)–
(13).

2. At the same time, we have calculated activation energies, important data that can
be used to analyze other syntheses.

3. Using Eqs. (12)–(13), we have found the parameters D and k, and using computer
modeling, the corresponding half-times for several temperatures.

Acknowledgments Research presented in the introduction section was funded by a grant (No. TAP-LLT-
07/2012) from the Research Council of Lithuania.
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